

AWG Array Waveguide Grating

Product Overview

Arrayed waveguide gratings (AWG) are commonly used as optical (de)multiplexers in wavelength division multiplexed (WDM) systems. These devices are capable of multiplexing a large number of wavelengths into a single optical fiber, thereby increasing the transmission capacity of optical networks considerably.

Features

- Low insertion loss
- Good channel loss consistency
- Low polarization loss
- High-channel isolation
- High reliability

Performance Index

Parameters	Notes	Specifications		l luite
		Min	Max	Units
Channels		40		Ch
Channel Spacing		100		GHz
Reference Pass-band	Relative to ITU Grid	± 0.1		nm
ITU Frequency	On ITU grid in C-band Even	196.00	192.10	THz
ITU Wavelength	On ITU grid in C-band Even	1529.55	1560.60	nm
ITU Frequency	On ITU grid in C-band ODD	196.05	192.15	THz
ITU Wavelength	On ITU grid in C-band ODD	1529.16	1560.20	nm
Center Frequency Accuracy	Max of the absolute deviation of the 3dB center wavelength from ITU grid over all channels	-0.05	+0.05	nm
Insertion Loss	Maximum of the insertion loss across the ITU pass-band over all channels		6.2	dB
Insertion Loss Uniformity	Maximum insertion loss variance across all channels		1.3	dB
Ripple	Maximum of the loss variance across the ITU pass-band over all channels		0.5	dB
0.5 dB Bandwidth	0.5 dB from min Insertion Loss, full width, worst case polarization	0.2		nm

Building information in high-speed, sharing technology for future...

1dB Bandwidth	1dB from min Insertion Loss, full width, average polarization	0.4		nm
3dB Bandwidth	3 dB from min Insertion Loss, full width, average polarization	0.55		nm
20 dB bandwidth	20 dB from min Insertion Loss, full width, average polarization		1.2	nm
Adjacent Channel Isolation	Ratio of peak transmission to the maximum transmission over both adjacent pass-bands	25		dB
Non-Adjacent Channel Isolation	Ratio of peak transmission in channel pass-bands to maximum transmission over all non-adjacent pass-bands	30		dB
Total Crosstalk	Ratio of power in channel to power in all other pass-bands	21		dB
Polarization Dependent Loss	Maximum ratio of transmissions over all polarization states, over the ITU pass-band		0.5	dB
Return Loss		40		dB
Polarization Mode Delay (PMD)	In Reference Passband over all channels		0.5	ps
Chromatic Dispersion	In Reference Passband over all channels	-15	15	ps/nm